TABLE 1. Predictors of Atherogenic Lipid Profile According to NCEP Thresholds (Results From Separate Multivariate Logistic Regression Models)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total Cholesterol &gt;6.2 mM</th>
<th>HDL Cholesterol &lt;0.9 mM</th>
<th>Triglycerides &gt;2.3 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (each 1 year more)</td>
<td>1.06 (1.01–1.11)</td>
<td>0.21 (0.09–0.50)</td>
<td>0.41 (0.22–0.80)</td>
</tr>
<tr>
<td>Sex (female vs. male)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV antibody positive vs. negative status</td>
<td>0.19 (0.08–0.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNRTI-based vs. PI-based HAART</td>
<td></td>
<td>0.49 (0.24–1.03)</td>
<td>1.95 (0.28–1.00)</td>
</tr>
</tbody>
</table>

Our findings confirm and extend previous observations that coinfection with HCV is associated with a lower probability of total cholesterol elevations after HAART initiation. In particular, in HIV/HCV-coinfected patients, 3 months after HAART initiation, we detected a mean 80% reduction in the adjusted risk of total cholesterol elevations judged clinically relevant by NCEP guidelines. Given that HCV did not show associations with HDL cholesterol levels in this study, it can be indirectly deduced that the lower risk of total cholesterol elevation is related to the non-HDL cholesterol component. While HCV had no influence on triglyceride elevations, NNRTI-based regimens as compared with PI-based as well as female sex showed a reduced probability of low HDL cholesterol and high triglyceride levels; these variables may therefore be associated with a lower cardiovascular risk. Although lipid levels represent only surrogate markers of the cardiovascular risk, factors associated with its elevations should be taken into account when choosing treatment regimens in the individual patient.

REFERENCES


Simona Di Giambenedetto, MD
Francesco Baldini, MD*
Antonella Cingolani, MD
Enrica Tamburrini, MD
Roberto Cauda, MD
Andrea De Luca, MD
Istituto di Clinica delle Malattie Infettive,
Università Cattolica del Sacro Cuore, and
*Istituto Nazionale delle Malattie Infettive-IRCCS “Lazzaro Spallanzani,”
Rome, Italy

Directly Observed Therapy for HIV Antiretroviral Therapy in an Urban US Setting

To the Editor:

In the United States, the use of antiretroviral therapy (ART) to treat HIV...
has led to dramatic reductions in AIDS mortality. However, not all those living with HIV in the United States have experienced the same reductions in mortality. Possible reasons for these differential death rates include tardy diagnosis, poor adherence, and differential access to health care and medications based on race, gender, class, mental illness, and substance abuse histories. Barriers to adherence with ART are complex and include a myriad of patient-, regimen-, and system-related factors. To improve HIV outcomes and reduce medical expenditures, there is a need for effective, sustainable, and replicable strategies to improve ART adherence. Directly observed therapy (DOT) has been used with success in the treatment of tuberculosis; this intervention has been suggested and piloted as a method to improve ART adherence. In Haiti, Partners In Health (PIH) successfully implemented a “DOT-ART” program in 600 patients. For the first time, PIH’s Haiti experience has been translated to the urban United States. The Prevention and Access to Care and Treatment (PACT) Project, Boston’s first community-based integrated AIDS prevention and treatment project, initiated a program of “DOT-Plus”—home-based DOT of ART enhanced by case management and counseling. This DOT-Plus program was designed to improve HIV treatment outcomes among patients in whom self-administered ART had failed.

Supported by Center for AIDS Research (CFAR) at Partners Health Care, Inc., Boston, MA.

Conflicts of interest do not exist in the conduction of this work or the reporting of the data. The authors do not have financial or personal relationships that bias their work. The study sponsor, the Center for AIDS Research, did not play any role in the study design; data collection, analysis, or interpretation; or report writing and submission. Authors had full access to all of the data in the study and accept full responsibility for the integrity and accuracy of the data.

METHODS

DOT-Plus Eligibility Criteria

Within 3 months prior to referral, eligible patients had a CD4 count <350 cells/µL and HIV viral load greater than the lowest level of detection of the available assay despite at least 6 months of ART. Patients with new diagnoses of HIV who had not been on ART for at least 6 months were excluded from the pilot study. Eligible patients also met at least two of the following criteria: an AIDS-defining illness, as defined by World Health Organization (WHO) criteria within the past 2 years, hepatitis C, mental illness, as defined by Diagnostic and Statistical Manual of Mental Disorders IV criteria or current prescription of psychiatric medications, active substance abuse within the 30 days prior to referral, or social instability, as defined by poverty (annual income <200% federal poverty guidelines), domestic violence within the 6 months prior to referral, present homelessness, or a lack of a social support network (as defined by lack of a family or friend on whom to call in the event of a medical emergency). In addition, entry into the DOT-Plus program required living within a 20-minute drive of PACT headquarters and a baseline HIV genotype demonstrating a viable once-daily ART regimen.

Selection of Once-Daily ART Regimen

Baseline HIV genotype was performed to ensure susceptibility to once-daily ART. Referring infectious disease specialists selected the ART regimens. Prepackaged pillboxes were delivered to patients on a monthly basis.

Training of DOT-Plus Workers

Two DOT workers were recruited from the community and received 30 hours of training and 10 hours of supervised fieldwork per an established PACT curriculum. (The PACT health promoter training manual will be published shortly.)

DOT-Plus Protocol

These 2 full-time DOT workers supervised once-daily ART doses (as well as other medications) in participants’ homes 7 days per week. Visits ranged from 15–90 minutes depending on the social, cognitive, and medical needs of each participant. The DOT workers collaborated with PACT health promoters who provided the “Plus” component of the DOT-Plus protocol. PACT health promoter activities including management of social crises such as domestic violence and substance abuse, accompagnement to medical and mental health appointments, education about medications and side effect management, and adherence counseling. Education and counseling were delivered weekly according to the PACT health promoter manual. PACT health promoters communicated with DOT-Plus participants at least 3 times per week and made 1 weekly home visit. PACT health promoters and DOT workers had daily phone communication and met weekly to discuss mutual patients.

Outcome Measurement

HIV viral loads and CD4 cell counts were obtained at baseline and 1, 3, 6, 9, and 12 months. Some viral loads were performed using the bDNA assay, and some using the Roche RNA assay. Adherence rates were calculated for observed doses, with the observed dose rate equal to the number of doses observed and kept down/total prescribed doses. Occasional failure to observe doses occurred if patients did not arrive at their scheduled DOT rendezvous. Therefore, “total adherence rates,” or adherence rates for [observed + unobserved but taken and kept down doses]/total prescribed doses, were calculated. An unobserved dose was only counted as having been taken if the pillbox was appropriately empty on the following day, and the patient reported having taken the dose at the appropriate time. If the patient vomited the medications, the dose was recorded as untaken. Patient satisfaction was reported through questionnaires ad-
ministered by research assistants. Regular communication with referring physicians and chart review enabled gathering of hospitalization and illness data. Health care utilization measures of interest included hospitalization data before and after the DOT-Plus intervention.

Study Timeline

The first cohort of 7 patients was enrolled in July and August 2002, and the second cohort of 8 patients was enrolled in January and February 2003, for a total of 15 patients. Patients enrolled in the DOT-Plus protocol received PACT services until they no longer wished to participate in the program. In this paper, 6-month data are presented for all 15 patients. Twelve-month data are presented for the first cohort only, as the second cohort has not yet reached the 12-month follow-up point.

Statistical Analysis

A 2-sided Wilcoxon sign-rank test was used to determine statistical significance of changes observed in CD4 cell counts and viral load. \( P \) value <0.05 was considered statistically significant. Intention-to-treat analysis was used. All patients had CD4 and viral load data collected and analyzed, even if they had dropped out of DOT-Plus.

Internal Review Board Approval

Approval was obtained from the Brigham and Women’s Hospital Internal Review Board for conducting this study.

RESULTS

Participant Recruitment and Enrollment

In June 2002, we reviewed the PACT cohort and approached 7 patients who had been receiving PACT health promotion services but still met eligibility criteria for participation in the DOT-Plus study. All 7 patients agreed to enroll and began DOT-Plus in July 2002. In December 2002, we opened enrollment to non-PACT patients, who were subject to the same eligibility criteria as the PACT-referred patients. Area infectious disease specialists referred 20 eligible patients to our project. We approached the 8 patients with the lowest CD4 counts; all 8 agreed to enroll in the protocol.

Participant Characteristics

The 15 DOT program participants had characteristics that have been associated in the literature with nonadherence and increased AIDS morbidity and mortality: nonwhite (n = 15), female (n = 10), active substance abuse (n = 7), clinical depression (n = 11), cognitive deficit (n = 3). Median viral load at baseline was 121,763 copies/mL (range: 69.0–500,000 copies/mL), and median CD4 count at baseline was 83 cells/µL (range: 8–298 cells/µL).

Participant Retention

The retention rate for the protocol was 87%, with only 2 study participants dropping out of DOT-Plus, one because of domestic violence and the other due to extreme depression and alcoholism. Relevant outcome data continue to be collected for these 2 patients.

Adherence

For the 13 participants who continue to receive DOT-Plus, observed adherence rates have varied from 63–95%, with an average of 81%. Total adherence rates have ranged from 86–100% with an average of 97%. Reasons for missed doses have included vomiting of pills, patients not being home for DOT visits, or refusal of pills because of nausea, pill fatigue, or potential breach of confidentiality due to guests in the home. The 2 patients who dropped out of DOT-Plus stopped their ART medications completely for the remaining months of follow-up.

Clinical Outcomes

Of the 15 participants, all of them with long histories of ART therapy, most have had dramatic reductions in viral load and increased CD4 counts. Eleven participants have HIV viral loads less than the lowest level of detection. Using an intention-to-treat analysis (n = 15), decrease in median viral load from baseline was log10 2.6 copies/mL \( (P = 0.001) \) at 6 months. Median CD4 count among the 15 participants increased from 83 cells/µL (range: 8–298 cells/µL) at baseline to 106 cells/µL (range: 11–578 cells/µL) at 6 months \( (P = 0.11) \). During the 6 months prior to enrollment, there were 10 total hospitalizations with a total length of stay of 52 hospital days for the 15 enrolled patients. Seven hospitalizations were AIDS-related with a total length of stay of 48 days. During the 6 months after enrollment, there were 5 hospitalizations with a total length of stay of 16 days for the 15 enrolled patients. Three hospitalizations were AIDS-related, with a total length of stay of 5 days. One hospitalization was related to toxicity of medications (nausea/vomiting) with a total length of stay of 2 days. Thus, we observed a dramatic decrease in the number of hospitalizations and number of hospitalization days within the 6 months following initiation of the DOT-Plus protocol. Further data will be necessary to determine the statistical significance of these findings.

As a secondary endpoint, 12-month data were analyzed for the 7 patients who had reached 1 year in the program at the time of analysis. Using an intention-to-treat analysis, decrease in median viral load from baseline at 12 months was log10 2.96 copies/mL \( (P = 0.02) \). Median CD4 count increased to 192 cells/µL (range: 16–262 cells/µL) \( (P = 0.22) \).

DISCUSSION

Preliminary results from this community-based DOT program suggest that daily DOT of a once-daily ART regimen among a challenging urban population is both acceptable to patients and feasible. Retention rates were high and many patients who are still receiving DOT-Plus at 15 months are requesting ongoing services. Although small sample size and short follow-up time limit our conclusions, preliminary results indicate that
>90% total adherence rates can be achieved in the majority of participants, and that clinically important improvements in CD4 and viral load can be observed within a relatively short period. In addition, there is a decrease in the number of total hospitalizations and length of stay comparing the 6 months prior to and after enrollment in the DOT-Plus protocol.

We applied the success of DOT of ART in rural Haiti to the urban United States, where HIV disease is increasingly associated with poverty and marginalization. DOT-Plus was offered to patients with advanced HIV disease in whom conventional self-administered therapy had already failed. Among these AIDS patients, most with some degree of ART resistance, 11 of 15 previously suppressive patients subsequently achieved undetectable viral loads. These rates of viral suppression exceed those observed in sociologically similar patient populations. In one study, Lucas et al.\textsuperscript{14} reported that only 37% of patients attending an inner city comprehensive HIV clinic had viral suppression 7–14 months after ART initiation.

CONCLUSION

This study evaluates the feasibility of DOT for a subset of difficult-to-reach patients in whom unsupervised therapy for advanced HIV disease has failed. We have shown that a DOT-Plus program is feasible and acceptable among a group of patients facing myriad social problems. Preliminary results suggest clinical improvement and reduced hospitalizations. A randomized controlled study with a greater number of patients is needed to demonstrate effectiveness, long-term participant retention, viral suppression and resistance repercussions, cost effectiveness, and sustainability of this complex adherence intervention. In addition, the relative contribution of the DOT vs. the case management components of the DOT-Plus intervention as well as the eventual transition to successful self-administration will need to be evaluated.

ACKNOWLEDGMENTS

The authors thank the Office of Minority Health, the Division of Social Medicine and Health Inequalities at Brigham and Women’s Hospital, the Division of AIDS at Harvard Medical School, and the Partners Center for AIDS Research. The authors thank Dr. Rebecca Gelman for statistical assistance.

Heidi L. Behforouz, MD
Audrey Kalmus, MPH
China S. Scherz, BA
Jeffrey S. Kahn, BA
Mital B. Kadakia, BA
Paul E. Farmer, MD, PhD
Division of Social Medicine and Health Inequalities, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
Partners In Health; Boston, MA.

REFERENCES


HIV Protease Inhibitors Increase Adiponectin Levels in HIV-Negative Men

To the Editor:

Lower levels of adiponectin, a hormone secreted by adipose tissue, have been associated with insulin resistance and increased visceral adipose tissue.\textsuperscript{1,2} Adiponectin has been shown to directly and rapidly decrease endogenous glucose production and improve glucose metabolism and fatty acid utilization in the liver and skeletal muscles in vivo.\textsuperscript{3,4} The relation of adiponectin to insulin sensitivity is independent of changes in other known adipocytokines, including leptin.\textsuperscript{5} Adiponectin is inversely associ-

**Current address: Bristol-Myers Squibb Company, Princeton, NJ.

Drs. Lee and Mafong contributed equally.

Supported by the National Institutes of Health (DK54615) and the University-wide AIDS Research Project (ID02-SF-060, ID01-SF-014). All studies were conducted in the General Clinical Research Center at San Francisco General Hospital with support by the National Center for Research Resources, National Institutes of Health (RR00083). This work was also partially funded by Bristol Myers Squibb Co., who make a competitive product, atazanavir. The data were not reviewed in any way by Bristol Myers Squibb Co.
ated with visceral and total adipose mass, as well as insulin sensitivity.

Both HIV-induced lipoatrophy and lipohypertrophy are associated with lower adiponectin levels, but the cause is unknown. HIV protease inhibitors have been studied as a possible cause of lower adiponectin levels. Although preliminary data found that protease inhibitors caused decreased adiponectin expression in fat cells in vitro, one group recently reported increased adiponectin levels during indinavir treatment in HIV-negative men. They have postulated that indinavir induced the increase in adiponectin levels due to either induction of insulin resistance or endothelial dysfunction.

Previously, we reported that the protease inhibitors, indinavir and lopinavir/ritonavir, have different metabolic effects in HIV-negative men. Whereas indinavir induced insulin resistance with no effect on lipid metabolism, lopinavir/ritonavir increased fasting triglycerides and free fatty acids but had little or no effect on insulin sensitivity during the euglycemic hyperinsulinemic clamp. Indinavir and other protease inhibitors can induce insulin resistance without changes in body fat. Therefore to assess the effects of 2 different protease inhibitors on adiponectin levels in vivo, we measured adiponectin levels in indinavir- and lopinavir/ritonavir-treated subjects.

As previously reported, HIV-negative men were treated with indinavir 800 mg 3 times daily or lopinavir 400 mg/ritonavir 100 mg twice daily. Fasting lipid and lipoprotein profiles, insulin sensitivity (euglycemic hyperinsulinemic clamp), and body composition were measured before and at the end of 4 weeks of treatment. Adiponectin and leptin levels were measured by radioimmunoassay (Linco Research, Inc., St. Charles, MO) in serum obtained after overnight fasting; serum samples were stored at \(-70^\circ C\). The data met normality assumptions and paired t tests were performed using Sigma Stat v. 2.03 (SPSS, Inc., San Rafael, CA). Data are presented as mean ± SEM. Two-tailed P value <0.05 was considered statistically significant.

Insulin-mediated glucose disposal per unit of insulin (M/I) decreased by 19% in response to indinavir with no change in lipid or lipoprotein profiles. During lopinavir/ritonavir treatment, fasting triglycerides and free fatty acids increased with no change in insulin-mediated glucose disposal. Abdominal visceral and subcutaneous adipose tissue measured by CT scan as well as total, appendicular, or trunk fat by dual-energy x-ray absorptiometry did not change after either treatment.

Adiponectin levels increased with indinavir and to an even greater extent with lopinavir/ritonavir. In contrast, leptin levels did not change after either treatment. There was no correlation between individual changes in body composition and changes in adiponectin levels.

The observation that serum adiponectin levels increased during treatment with both indinavir and lopinavir/ritonavir has several implications. First, the increased adiponectin levels induced by indinavir and lopinavir/ritonavir treatment cannot explain the lower levels of adiponectin found in patients with HIV-associated lipohypertrophy and lipoatrophy, although many were on protease inhibitors. These data raise the possibility

| TABLE 1. Metabolic Parameters at Baseline and at the End of 4-Week Treatment with Indinavir and Lopinavir/Ritonavir |
|---------------------------------------------------------------|---------------------------------------------------------------|
| **Indinavir** | **Lopinavir/Ritonavir** |
| **Baseline** | **4-Week Treatment** | **P Value** | **Baseline** | **4-Week Treatment** | **P Value** |
| Insulin-mediated glucose disposal (mg/kg · per µU/mL insulin)* | 10.4 ± 1.4 | 8.6 ± 1.2 | 0.009 | 15.9 ± 2.1 | 16.2 ± 2.3 | 0.81 |
| Triglycerides (mmol/L) | 1.4 ± 0.2 | 1.7 ± 0.4 | 0.22 | 0.9 ± 0.2 | 1.6 ± 0.4 | 0.007 |
| Free fatty acids (mmol/L)* | 0.30 ± 0.02 | 0.22 ± 0.04 | 0.31 | 0.33 ± 0.04 | 0.43 ± 0.06 | 0.001 |
| Adipose tissue by CT scan | | | | | | |
| Subcutaneous (mm²)* | 14,762 ± 1,577 | 14,629 ± 1,651 | 0.72 | 17,629 ± 2,025 | 16,922 ± 2,371 | 0.29 |
| Visceral (mm²)* | 8896 ± 1,865 | 9449 ± 2,178 | 0.28 | 8950 ± 1,933 | 8560 ± 2,094 | 0.11 |
| DEXA scan | | | | | | |
| Total fat tissue (kg)* | 15.8 ± 1.9 | 15.2 ± 1.9 | 0.01 | 16.8 ± 1.9 | 16.6 ± 1.2 | 0.31 |
| Appendicular fat (kg)* | 6.7 ± 0.7 | 6.5 ± 0.6 | 0.08 | 8.5 ± 0.7 | 8.4 ± 0.7 | 0.6 |
| Trunk fat (kg)* | 8.3 ± 1.2 | 7.9 ± 1.2 | 0.03 | 7.6 ± 1.3 | 7.4 ± 1.4 | 0.38 |
| Adiponectin (µg/mL) | 9.5 ± 1.6 | 10.7 ± 1.8 | 0.05 | 11.0 ± 1.5 | 14.0 ± 2.1 | 0.005 |
| Leptin (ng/mL) | 4.6 ± 1.0 | 4.1 ± 0.8 | 0.18 | 4.0 ± 0.9 | 3.8 ± 0.9 | 0.3 |

Data are mean ± SEM. All P values are by paired t test (n = 10).
*Previously reported by Shankar et al. and Noor et al.
DEXA, dual-energy x-ray absorptiometry.
that body composition changes per se may be the underlying cause of the decrease in adiponectin levels in HIV-associated lipodystrophy, although a role for drugs other than protease inhibitors cannot be ruled out. Secondly, the increase in adiponectin induced by these 2 protease inhibitors in vivo contrasts with the decrease in adiponectin expression in 3T3 adipocytes acutely treated in vitro with indinavir, ritonavir, saquinavir, nelfinavir, zidovudine, or stavudine.6 Third, other protease inhibitors should be studied for their effects on adiponectin levels. Finally, because adiponectin levels are increased by both indinavir, which induces insulin resistance, and by lopinavir/ritonavir, which has little or no effect on insulin sensitivity, induction of insulin resistance is unlikely to explain the increased adiponectin levels seen with both protease inhibitors. Thus these data argue against the hypothesis that increased adiponectin levels during protease inhibitor treatment remains to be elucidated. Whether protease inhibitors exert their action on adipose or endothelial cells is unclear. Further studies identifying the mechanism of protease inhibitor-induced adiponectin increase are needed.

We cannot rule out the possibility that induction of adiponectin blunted the appearance of insulin resistance. We also found that the increase in adiponectin levels occurred in the absence of changes in subcutaneous or visceral fat or leptin. The induction of adiponectin independent of changes in body fat mass is interesting with regard to thiazolidinedione therapy for HIV lipodystrophy. Thiazolidinediones have been shown to increase adiponectin levels, raising the possibility that adiponectin mediates some of the effects of thiazolidinediones on glucose metabolism. Recent data12 have indicated the thiazolidinediones also raise adiponectin levels in patients with HIV lipodystrophy and insulin resistance without major changes in body fat mass. The cause for increased adiponectin levels during protease inhibitor treatment remains to be elucidated. Whether protease inhibitors exert their action on adipose or endothelial cells is unclear. Further studies identifying the mechanism of protease inhibitor-induced adiponectin increase are needed.

**REFERENCES**